Good Morning

- Grab a whiteboard and draw the diagrams for:
- CO_2 : • H_2O : • SCI_2 :

Today

- Finish 8.2
- 8.3: Bonding Theories
- Begin 8.4: Polar Bonds and Molecules
- Lab Preview

Homework

- From Monday: I-3, 6, I3-I5, 20, 21, 39, 41-46, 51.
- From Today (time permitting): 24, 27, 28, 32-35, 37, 38, 54, 57 (58-60)

8.3 Bonding Theories

- Relationships between atomic and molecular orbitals.
- The VSEPR theory for predicting the shapes of molecules.
- Orbital Hybridization.

Molecular Otbitals

- To this point we have assumed that electrons that are shared by two atoms occupy each of the atoms electron orbitals.
- It turns out that the orbitals "merge" to form new shapes.
- These are molecular orbitals.

•11.• 1• 1s 1s •11 1s 2p

Examples

Molecular Orbitals

- These orbitals are shared by the molecule.
- Types:
 - Sigma bond (σ)
 - Pi bond (π)

Sigma Bonds o

- Two atoms form a **symmetrical** orbital in reference to the "bond axis."
- The bond axis is a line that could be drawn along both nuclei.
- Nuclei are attracted to grater electron density.
- End to end overlap.

Monday, October 20, 14

Examples

• Hydrogen gas:

• Fluorine gas:

Pi Bonds TT

- Side by side overlap.
- Electrons are most likely to be found away from the bond axis.
- "Sausage-shaped"
- Less overlap than sigma bonds.
- Less attraction to nucleus due to proximity.

Example

Fact Check

- Pi or Sigma bonds are stronger?
- Why?
- Draw one of each.
- Write questions if you have them.

VSEPR Theory

- Valence
- Shell
- Electron
- Pair
- Repulsion

VSEPR Theory

- A better way to represent molecular bonding in 3-D compared to dots.
- Think of Methane CH4

• The hydrogen atoms want to repel each other.

Formal VSEPR

- The repulsion between electron pairs causes molecular shapes to adjust so that valence electron pairs are as far apart as possible.
- Think like charges repel.

VSEPR Theory

Video Intro

How Much Space?

- The space between bonding electron pairs depends on many things.
- We will explore the reasons why different atoms make different shapes.
- Depends on the number and types of bonds.

Shape Shifting

- Shared bonding pairs repel one another.
- Unshared bonding pairs also repel pairs of electrons.
- This will lead to some things being "bent."
- All shapes are listed on p. 233.

Method

- Draw the dot diagram.
- Note where there are shared electron pairs.
- Note non-shared electron pairs.
- All electron pairs repel.

Triatomic Example

• H₂0:

• CO2:

Monday, October 20, 14

Tetrahedral

- Tetra-Four
- Hedral-number of flat surfaces on an object.
- These molecules have a central atom and four single covalent bonds.

Example: Methane

•CH4:

Pyramidal: Ammonia

•NH3:

Hybrid Orbitals

- Several atomic orbitals mix together.
- The shapes change.
- They form the same **total** number of orbitals.

Example: Methane

- Carbon has 4 total valence electrons.
- 2 in the s orbital and 2 in the p orbital.
- Shared s orbitals are stronger than shared p orbitals.
- The s orbital electrons move out to the p orbital and the shape is symmetrical.

Methane

8.4 Polar Bonds and Molecules

- How does electronegativity determine the distribution of charge in a molecule?
- What happens when polar molecules are between metal plates?

8.4 Polar Bonds and Molecules

- Strength of intermolecular attractions in molecules compared to ionic compounds.
- Why do "network solids" have a high melting point?

Polar & Non-Polar Molecules: Crash Course Chemistry #23

Bond Polarity-4:45

Non-polar Covalent

- The pull of each atom on the electrons that it shares is equally distributed.
- These have a balance of charge.
- Diatomic Molecules like hydrogen and oxygen gas are examples of this.

Polar Covalent Bonds

- One atom has a higher electronegativity than another atom.
- The more electronegative atom attracts the electrons more.
- One region is more negative than another.

Difference in Electronegativity

- 0.0-0.4: Non-polar covalent bond.
- 0.4-1.0: Moderately polar covalent.
- I.0-2.0:Very polar covalent.
- More than 2.0: lonic bond.

н	1																He
2.1	Be	ľ.										B	C	N	0	F	Ne
1.0	1.5											2.0	2.5	3.0	3.5	4.0	146
Na	Mg											AI	Si	Р	S	CI	Ar
0.9	1.2				2			2			a	1.5	1.8	2.1	2.5	3.0	
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	3.0
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	2.6
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	Ti	Pb	Bi	Po	At	Rn
0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	2.4
Fr	Ra	Ac	Unq	Unp	Unh	Uns	Uno	Une									
0.7	0.7	1.1		22													
0.	D-	N.J.	Des	0		04	Th	Du			Tere	Vh	1	1			

	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.2
ľ	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	1.3	1.5	1.7	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	3257

PT Electronegativity

Water

Dipole Effect

- Polar molecules have charges on different sides.
- Dipole: two poles.
- These things respond to electrical charges.

Attractions Between Molecules

- Van der Waals Forces The two weakest forces between groups of the same kind of molecule.
- I) Dipole interactions positive end of one molecule is attracted to the negative end of another molecule of the same kind.

Attractions Between Molecules

- 2) Dispersion Forces electrons from one molecule affect the electrons of another molecule.
- Example: + + + + +

Hydrogen Bonds

- Hydrogen that is bonded in a molecule tends to have it's I electron towards the center of the molecule.
- The part facing out is more positive.
- This is attracted to negative parts of molecules.

Intermolecular Attractions

- These are "network solids"
- All of the atoms are covalently bonded to each other.
- These molecules bond to each other and for lattice structures the way that ionic compounds do, but with covalent bonds instead of electrostatic forces.

Physical Properties

- VERY high melting point.
- Not water soluble.
- Very low electrical conductivity.
- Ex: Diamond do not melt. They vaporize at 3500 degrees Celsius.